Thornton & Marion (5th Edition), Chapter 01, Problem 02 Solution

Thornton & Marion, Classical Dynamics, 5th Edition

Chapter 1. Matrices, Vectors, and Vector Calculus

Problem 02. Trigonometric properties of direction cosines

Solution

For Equation (1.10): \cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1 Proof)

Using Figure 1-4 (a) in the book, let the length of a point P on the line (\alpha, \beta, \gamma) from the origin be l, then

l^2\cos^2\alpha + l^2\cos^2\beta + l^2\cos^2\gamma = l^2
 

Therefore, it becomes

\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1
 

For Equation (1.11): \cos\alpha\cos\alpha' + \cos\beta\cos\beta' + \cos\gamma\cos\gamma' = \cos\theta

In Figure 1-4 (b) in the book, let the length of a point P on the line (\alpha, \beta, \gamma) from the origin be l and the length of a point P’ on the line (\alpha', \beta', \gamma') be l'.

l = \sqrt{l^2\cos^2\alpha + l^2\cos^2\beta + l^2\cos^2\gamma} 
l' = \sqrt{l'^2\cos^2\alpha' + l'^2\cos^2\beta' + l'^2\cos^2\gamma'}
 

Using the law of cosines,

\overline{PP'}^2 = l^2 + l'^2 - 2 l l' \cos\theta
 

Since \begin{array}{rcl} \overline{PP'}^2 & = & (l\cos\alpha - l'\cos\alpha')^2 + (l\cos\beta - l'\cos\beta')^2 + (l\cos\gamma - l'\cos\gamma')^2 \\ & = & l^2(\cos^2\alpha + \cos^2\beta + \cos^2\gamma) + l'^2(\cos^2\alpha' + \cos^2\beta' + \cos^2\gamma') - 2 l l' (\cos\alpha\cos\alpha' + \cos\beta\cos\beta' + \cos\gamma\cos\gamma') \\ & = & l^2 + l'^2 - 2 l l' (\cos\alpha\cos\alpha' + \cos\beta\cos\beta' + \cos\gamma\cos\gamma') \end{array} the equation becomes

l^2 + l'^2 - 2 l l' (\cos\alpha\cos\alpha' + \cos\beta\cos\beta' + \cos\gamma\cos\gamma') = l^2 + l'^2 - 2 l l' \cos\theta
 

Therefore,

\cos\alpha\cos\alpha' + \cos\beta\cos\beta' + \cos\gamma\cos\gamma' = \cos\theta

Reference

https://en.wikipedia.org/wiki/Law_of_cosines

Leave a Reply